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Proprioceptive sensors

Prof. Alessandro De Luca



Properties of measurement systems - 1

n accuracy
agreement of measured values with a given reference 
standard (e.g., ideal characteristics)

n repeatability
capability of reproducing as output similar measured 
values over consecutive measurements of the same 
constant input quantity

n stability
capability of keeping the same measuring characteristics 
over time/temperature (similar to accuracy, but in the long run)
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Accuracy and Repeatability
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Accuracy and Repeatability 
in robotics
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n accuracy is how close a robot can come to a given point in its workspace
n depends on machining accuracy in construction/assembly of the robot, flexibility effects 

of the links, gear backlash, payload changes, round-off errors in control computations, ...
n can be improved by (kinematic) calibration

n repeatability is how close a robot can return to a previously taught point
n depends only the robot controller/measurement resolution

n both may vary in different areas of 
the robot workspace
n standard ISO 9283 defines conditions 

for assessing robot performance
n limited to static situations (recently, 

interest also in dynamic motion)
n robot manufacturers usually provide 

only data on “repeatability”

simple test on repeatability of a
Fanuc ArcMate100i robot (1.3 m reach)

video



Properties of measurement systems - 2

n linearity error
maximum deviation of the measured output from the 
straight line that best fits the real characteristics
n as % of the output (measurement) range

n offset error
value of the measured output for zero input
n sometimes not zero after an operation cycle, due to hysteresis

n resolution error
maximum variation of the input quantity producing no 
variation of the measured output
n in absolute value or in % of the input range
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Sensor measurements
some non-idealities
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Classes of sensors for robots

n proprioceptive sensors measure the internal state of the 
robot (position and velocity of joints, but also torque at joints or
acceleration of links)
n kinematic calibration, identification of dynamic parameters, control

n exteroceptive sensors measure/characterize robot 
interaction with the environment, enhancing its autonomy
(forces/torques, proximity, vision, but also sensors for sound, smoke, 
humidity, …)
n control of interaction with the environment, obstacle avoidance in 

the workspace, presence of objects to be grasped, …
n mobile-base robots: localization in a map, navigation in unknown 

environments, …
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Position sensors

n provide an electrical signal proportional to the displacement
(linear or angular) of a mechanical part with respect to a 
reference position

n linear displacements: potentiometers, linear variable-
differential transformers (LVDT), inductosyns

n angular displacements: potentiometers, resolvers, syncros    
(all analog devices with A/D conversion), optical encoders 
(digital), Hall sensors, ...

the most used in robotics, since also linear 
displacements are obtained through rotating 

motors and suitable transmissions
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Absolute encoders
• rotating optical disk, with alternate 

transparent and opaque sectors on 
multiple concentric tracks

• (infrared) light beams are emitted by 
leds and sensed by photo-receivers

• light pulses are converted into 
electrical pulses, electronically 
processed and transmitted in output 

• resolution = 360o / 2Nt

• digital encoding of absolute position
when the optical disk is rotating fast, the 
use of binary coding may lead to (large) 
reading errors, in correspondence to 
multiple transitions of bits
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(min 12 in robotics)
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Absolute encoding

adjacent codes differ
by just one bit

XOR
optical disks
with 2 bits 
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Use of absolute encoders
• ready to measure at start (no “homing”)
• two modes for permanent operation
- when switching off the drive, position 

parameters are saved on a flash memory 
(and brakes activated) 

- battery for the absolute encoder is always 
active, and measures position even when 
the drive is off

- data memory > 20 years
• single-turn or multi-turn versions, e.g. 
- 13-bit single-turn has 213 = 8192 steps per 

revolution (resolution = 0.044o)
- 29-bit multi-turn has 8192 steps/revolution 

+ counts up to 216 = 65536 revolutions
• aluminum case with possible interface to field 

bus systems (e.g., CANopen or PROFIBUS)
• typical supply 5/28V DC @1.2 W
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hollow shaft

round flange

13-bit absolute encoder opened:
Gray-coded disk and electronics multi-turn



Incremental encoders 
• optical rotating disk with three tracks, alternating 

transparent and opaque areas: measures  
incremental angular displacements by counting trains 
of Ne pulses (“counts”) per turn (Ne = 100�5000)

• the two A and B tracks (channels) are 
in quadrature (phase shift of 90o

electrical), allowing to detect the 
direction of rotation

• a third track Z is used to define the 
“0” reference position, with a reset of 
the counter (needs “homing” at start)

• some encoders provide as output also 
the three phases needed for the 
switching circuit of brushless motors
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The three tracks
on an optical disk
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Incremental encoders 

• two (cheap) incremental encoders 
inside a mouse
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• a OMRON incremental encoder 
with 2000 pulses/turn

diameter ∅ 40 mm
mass m ≈ 100 g

inertia J = 1⋅10-6 kg m2



• “fractions of a cycle” of each pulse train are 
measured in “electrical degrees”

• 1o electrical = 1o mechanical/Ne 
360o mechanical = 1 turn

• signals are fed in a digital counter, with a  
D-type flip-flop to sense direction + reset

• to improve resolution (4�), the leading and 
trailing edges of signals A and B are used

• the sequence of pulses C will clock now the 
counter (increments or decrements)

Signal processing
C
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Count multiplication
example of quadrature detection
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• an incremental encoder with Ne = 2000 (electrical) cycles provides a 
count of N = 8000 pulses/turn after electronic multiplication
• its final resolution is (mechanical) 360o/8000 = .045o (= 0o 2’ 42’’)
• needs a 13-bit counter to cover a full turn without reset (213 = 8192)



Quadrature detection in incremental encoders
a more complete implementation
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• it is assumed that an oversampling clock "clk” (e.g., as provided by a FPGA) 
is available, which is faster than the two quadrature signals A and B
• the digital count output will have a resolution multiplied by 4

NOTE: since in practice A and B signals may
not be synchronous to the clock signal,

two extra D flip-flops per input should be used 
to avoid meta-stable states in the counters

90� electrical

XOR gates

D (delay) flip-flops



Accuracy in incremental encoders

• division error: maximum 
displacement between two 
consecutive leading/trailing 
edges, typically within max    
� 25o electrical

• the phase shift of the two 
channels, nominally equal to 
90o electrical, is typically within 
max � 35o electrical 
(quadrature error) 

...apart from 
quantization errors
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Indirect measure of velocity
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animation of Savitzky-Golay filter

with cubic polynomials

n numerical differentiation of digital measures of position
n to be realized on line with Backward Differentiation Formulas (BDFs)

n 1-step BDF (Euler): 

n 4-step BDF: 

n convolution filtering is needed because of noise and position quantization
n use of non-causal filters (e.g., Savitzky-Golay) helps, but introduces delays

n Kalman filter for on line state estimation (optimal, assuming Gaussian noise)

problems of peaks
at low speed
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Kinematic Kalman Filter
for velocity estimation
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design a (linear) Kalman filter providing an estimate        of the model state
using the optimal
Kalman gain

(a priori) prediction correction (based on the measured output)



Velocity sensor: Tachometer
always mounted on the (electrical) motor axis

N S

q

permanent magnet coil with area S

w

principle of operation (single coil)

Sw

V

B = cost

amplitude V µ w

⇒ to reduce ripples, use m coils
rotated regularly by 180o/m
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magnetic field:
flux through the coil is F(B) = |B|S cos q = |B|S cos wt

V = - dF/dt = |B|S w sin wt



DC tachometer
an example
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• Servo-Tek Tach Generator (B series)
• bi-directional
• output voltage 11�24 V @1000 RPM
• low ripple: < 3% peak-to-peak of DC 

value (with 72 KHz filter)
• weight = 113 g, diameter = 2.9 cm
• linearity error < 0.1% (at any speed)
• stability 0.1% (w.r.t. temperature) 

1.75 mNm (as a load)



Accelerometers
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animation of 
measurement principle

in a piezoelectric 
accelerometer

n measure of linear acceleration based on inertial forces (no “touch”)
n units: [m/s²] or gravitational acceleration [g] (non-SI unit: 1g ≈ 9.81 m/s²)

n different principles for converting mechanical motion in an electrical signal
n piezoelectric: piezoceramics (PZT) or crystals (quartz), better linearity & stability, 

wide dynamic range up to high frequencies, no moving parts, no power needed
n piezoresistive: for high-shocks, measures also static acceleration (g0), needs supply
n capacitive: silicon micro-machined sensing element, superior in static to low 

frequency range, can be operated in servo mode, cheap but limited resolution
n modern solution: small MEMS (Micro Electro-Mechanical Systems)

n multiple applications: from vibration analysis to long range navigation



Operation principle
seismic accelerometer
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Frequency characteristics
of a piezoelectric accelerometer
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MEMS accelerometers
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n very simple MEMS (a cantilever beam with a test mass, with damping from the 
residual gas sealed in the device), single- or tri-axial, very small and light

n cross-couplings among acceleration sensing directions should be limited ≤ 3%

ADXL335 3-axis, small,
low power, �3g, with signal
conditioned voltage outputs 



Mounting accelerometers on robots

Robotics 1 27

3-axial MEMS
accelerometer
on the forearm

of a KUKA KR15/2
[DLR/Sapienza, 2007] 

3-axial capacitive accelerometer 
on end-effector tool of an ABB robot
(Crossbow Technology: 2g range, 

1V/g output, 0-50 Hz, �2� align error)
[Linköping, 2012] 

Bosch BMA 150 3-axial accelerometers 
integrated in two larger Tactile Modules on the

links of a Bioloid humanoid left arm [TUM, 2011]


