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Summary

§ A world of soft robots
§ flexible joints, serial elastic actuation (SEA), variable stiffness actuation (VSA), 

distributed link flexibility
§ lightweight robots with flexible joints in physical Human-Robot Interaction (pHRI)

§ Dynamic modeling of flexible joint manipulators
§ … with few comments on its properties 

§ Classical control tasks and their solution
§ full-state feedback linearization design for trajectory tracking
§ regulation with partial state feedback and gravity compensation

§ Model-based design based on feedback equivalence
§ exact gravity cancellation 
§ damping injection on the link side
§ environment interaction via generalized impedance control

§ Outlook
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Classes of soft robots
Robots with elastic joints

§ design of lightweight robots with stiff links for end-effector accuracy
§ compliant elements absorb impact energy 

§ soft coverage of links (safe bags)
§ elastic transmissions (HD, cable-driven, ...)

§ elastic joints decouple instantaneously the larger inertia of the driving 
motors from smaller inertia of the links (involved in contacts/collisions!)

§ relatively soft joints need more sensing (e.g., joint torque) and better 
control to compensate for static deflections and dynamic vibrations

torque-controlled robots (DLR LWR-III, KUKA LWR-IV & iiwa, Franka, …)
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Classes of soft robots
Robots with Variable Stiffness Actuation (VSA)

§ uncertain interaction with dynamic environments (say, humans) requires 
to adjust online the compliant behavior and/or to control contact forces
§ passive joint elasticity & active impedance control used in parallel

§ nonlinear flexible joints with variable (controlled) stiffness work at best
§ can be made stiff when moving slow (performance), soft when fast (safety)
§ enlarge the set of achievable robot compliance in a task-oriented way
§ feature also robustness, optimal energy use, explosive motion tasks, ...
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Classes of soft robots
Robots with flexible links
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§ distributed link deformations 

§ design of very long and slender arms needed in the application

§ use of lightweight materials to save weight/costs

§ due to large payloads (viz. large contact forces) and/or high motion speed

§ as for joint elasticity, neglecting link flexibility will limit static (steady-state 
error) or dynamic (vibrations, poor tracking) performance

§ extra control issue due to non-minimum phase nature of the outputs of 
interest w.r.t. the command inputs … “move in the opposite direction!”



A matter of terminology ... 
Different sources of elasticity, though similar robotic systems 

§ elastic joints vs. SEA (Serial Elastic Actuators)
§ based on the same physical phenomenon: compliance in actuation
§ compliance added on purpose in SEA, mostly a disturbance in elastic joints
§ different range of stiffness: 5-10K Nm/rad down to 0.2-1K Nm/rad in SEA

§ joint deformation is often considered in the linear domain 
§ modeled as a concentrated torsional spring with constant stiffness at the joint 
§ nonlinear flexible joints share similar control properties
§ nonlinear stiffness characteristics are needed instead in VSA 
§ a (serial or antagonistic) VSA working at constant stiffness is an elastic joint

§ flexible joint robots are classified as underactuated mechanical systems
§ have less commands than generalized coordinates 
§ non-collocation of command inputs and dynamic effects to be controlled
§ however, they are controllable in the first approximation (the easy case!)
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Exploiting joint elasticity in pHRI
Detection and selective reaction in torque control mode, based on residuals

§ collision detection & reaction for safety (model-based + joint torque sensing)
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[De Luca 
et al, 2006;
Haddadin

et al, 2017]



Exploiting joint elasticity in pHRI
Human-robot collaboration in torque control mode
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§ contact force estimation & control (virtual force sensor, anywhere/anytime)

[Magrini
et al, 2015]



Dynamic modeling
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Lagrangian formulation (so-called reduced model of Spong)

§ open chain robot with N elastic joints and N rigid links, driven by electrical actuators

§ use N motor variables ! (as reflected through the gear ratios) and N link variables "
§ assumptions

A1) small displacements at joints 
A2) axis-balanced motors
A3) each motor is mounted on the robot

in a position preceding the driven link
A4) no inertial couplings between motors and links
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Single elastic joint
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Feedback linearization
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§ an exactly linear and I/O decoupled closed-loop system is obtained

§ to be stabilized with standard techniques for linear dynamics (pole placement, LQ, …)

§ requires higher derivatives of q

§ however, these can be computed from the model using the state measurements

§ requires higher derivatives of the dynamics components

§ A ; <3 Newton-Euler recursive numerical algorithm is available for this problem

§ the link position q is a linearizing (flat) output 

For accurate trajectory tracking tasks

§ differentiating twice the link equation and using the motor acceleration yields

!, !̇, !̈, !(7)

'̈, -̈, 0̈
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Feedback linearization
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Based on the rigid model only vs. when including joint elasticity
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[Spong, 1986]rigid computed torque elastic joint feedback linearization



Feedback linearization
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Benefits on an industrial KUKA KR-15/2 robot (235 kg) with joint elasticity
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conventional industrial robot control

trajectory tracking with model-based control
feedback linearization + high-damping
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Regulation tasks
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−2 2 + 25 > ! [De Luca, Siciliano, Zollo, 2004]

( ) 7 , ) 7 : ( ) = 2(7 − )) 25 > 0, ./01 2 > ! [Ott, Albu-Schäffer, 2004]

( ) + =289 ( ) 25 > 0, 2 > 0 [De Luca, Flacco, 2010]

for a desired constant link position )>
§ evaluate the associated desired motor position 7- at steady state
§ collocated (partial state) feedback preserves passivity, with stiff 25 gain dominating gravity
§ focus on the term for gravity compensation (acting on link side) from motor measurements

? = ?@ + 25 7- − 7 − 2A7̇

Using a minimal PD+ action on the motor side

7- = )- + 289(()-)

exact gravity cancellation
(with full state feedback)
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Exact gravity cancellation
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A slightly different view

§ for rigid robots this is trivial, due to collocation
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Exact gravity cancellation
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… based on the concept of feedback equivalence between nonlinear systems

§ for elastic joint robots, non-collocation of input torque and gravity term

??
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Feedback equivalence
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Exploit the system property of being feedback linearizable (without forcing it!)

linear, controllable system

feedback transformations
static state feedback 

+ change of coordinates 
both invertible

gravity-loaded system gravity-free system

≈  linearizing outputs
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A global PD-type regulator
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Exact gravity cancellation + PD law on modified motor variables: A 1-DOF arm

gravity-loaded system under PD 
+ gravity cancellation

vs. 
gravity-free system under PD 

(with same gains)
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works without strictly 
positive lower bounds
(good also for VSA!)



Vibration damping on lightweight robots
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DLR-III or KUKA LWR-IV with relatively low joint elasticity (use of Harmonic Drives)
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Vibration damping OFF
[Albu Schäffer et al, 2007]

Cartesian vibration damping ON

For relatively large joint elasticity (low stiffness), as encountered in VSA systems, vibration 
damping via joint torque feedback + motor damping is insufficient for high performance!



Damping injection on the link side
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7 5 − 2 = 7 5 − 23 + 45̇
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§ same principle of feedback equivalence (including state transformation)
§ ESP = Elastic Structure Preserving control by DLR [Keppler et al, 2016] 
§ generalizations to trajectory tracking, to nonlinear joint flexibility, and to visco-elastic joints

Method for the VSA-driven bimanual humanoid torso David
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feedback control



Damping injection on the link side
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Method for VSA-driven bimanual humanoid torso David at DLR
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[Keppler et al, 2017]



Environment interaction via impedance control

22

§ again, by the principle of feedback equivalence (including the state transformation)

Matching a generalized (fourth order) impedance model: A simple 1-DOF case
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Outlook

§ Mature field revamped by a new “explosion” of interest

§ simpler control laws for compliant and soft robots are very welcome

§ sensing requirements could be a bottleneck

§ combine (learned) feedforward and feedback to achieve robustness

§ iterative learning on repetitive tasks is available for flexible manipulators

§ optimal control (min time, min energy, max force, …) still open for fun

§ Revisiting model-based control design

§ do not fight too much against the natural dynamics of the system

§ it is unwise to stiffen what was designed/intended to be soft on purpose

§ still, don’t give up too much of desirable performance! 

§ Ideas assessed for joint elasticity may migrate to many application 

domains and other classes of soft-bodied robots

§ locomotion, shared manipulation, physical interaction in complex tasks, …

§ keep in mind intrinsic constraints and control limitations (e.g., instabilities in 

the system inversion of tip trajectories for flexible link robots)
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Control of flexible robots in 2020+


