Opening of the Munich School of Robotics and Machine Intelligence at TUM Scientific Colloquium München, October 26, 2018

Flexible joint robots: Model-based control revisited

Alessandro De Luca

Dipartimento di Ingegneria Informatica, Automatica e Gestionale (DIAG)

deluca@diag.uniroma1.it

Summary

A world of soft robots

- flexible joints, serial elastic actuation (SEA), variable stiffness actuation (VSA), distributed link flexibility
- lightweight robots with flexible joints in physical Human-Robot Interaction (pHRI)
- Dynamic modeling of flexible joint manipulators
 - ... with few comments on its properties
- Classical control tasks and their solution
 - full-state feedback linearization design for trajectory tracking
 - regulation with partial state feedback and gravity compensation
- Model-based design based on feedback equivalence
 - exact gravity cancellation
 - damping injection on the link side
 - environment interaction via generalized impedance control
- Outlook

Classes of soft robots

Robots with elastic joints

- design of lightweight robots with stiff links for end-effector accuracy
- compliant elements absorb impact energy
 - soft coverage of links (safe bags)
 - elastic transmissions (HD, cable-driven, ...)

- elastic joints decouple instantaneously the *larger* inertia of the driving motors from *smaller* inertia of the links (involved in contacts/collisions!)
- relatively soft joints need more sensing (e.g., joint torque) and better control to compensate for static deflections and dynamic vibrations

torque-controlled robots (DLR LWR-III, KUKA LWR-IV & iiwa, Franka, ...)

Classes of soft robots

Robots with Variable Stiffness Actuation (VSA)

- uncertain interaction with dynamic environments (say, humans) requires to adjust online the compliant behavior and/or to control contact forces
 - passive joint elasticity & active impedance control used in parallel
- nonlinear flexible joints with variable (controlled) stiffness work at best
 - can be made stiff when moving slow (performance), soft when fast (safety)
 - enlarge the set of achievable robot compliance in a task-oriented way
 - feature also robustness, optimal energy use, explosive motion tasks, ...

Scientific Colloquium for the Opening of the MSRM at TUM

Classes of soft robots

Robots with flexible links

distributed link deformations

- design of very long and slender arms needed in the application
- use of lightweight materials to save weight/costs
- due to large payloads (viz. large contact forces) and/or high motion speed
- as for joint elasticity, neglecting link flexibility will limit static (steady-state error) or dynamic (vibrations, poor tracking) performance
- extra control issue due to non-minimum phase nature of the outputs of interest w.r.t. the command inputs ... "move in the opposite direction!"

A matter of terminology ...

Different sources of elasticity, though similar robotic systems

elastic joints vs. SEA (Serial Elastic Actuators)

- based on the same physical phenomenon: compliance in actuation
- compliance added on purpose in SEA, mostly a disturbance in elastic joints
- different range of stiffness: 5-10K Nm/rad down to 0.2-1K Nm/rad in SEA
- joint deformation is often considered in the linear domain
 - modeled as a concentrated torsional spring with constant stiffness at the joint
 - nonlinear flexible joints share similar control properties
 - nonlinear stiffness characteristics are needed instead in VSA
 - a (serial or antagonistic) VSA working at constant stiffness is an elastic joint
- flexible joint robots are classified as underactuated mechanical systems
 - have less commands than generalized coordinates
 - non-collocation of command inputs and dynamic effects to be controlled
 - however, they are controllable in the first approximation (the easy case!)

Exploiting joint elasticity in pHRI

Detection and selective reaction in torque control mode, based on residuals

collision detection & reaction for safety (model-based + joint torque sensing)

[De Luca et al, 2006; Haddadin et al, 2017]

Exploiting joint elasticity in pHRI

Human-robot collaboration in torque control mode

contact force estimation & control (virtual force sensor, anywhere/anytime)

[Magrini *et al,* 2015]

Dynamic modeling

Lagrangian formulation (so-called reduced model of Spong)

- open chain robot with N elastic joints and N rigid links, driven by electrical actuators
- use N motor variables θ (as reflected through the gear ratios) and N link variables q
- assumptions
 - A1) small displacements at joints
 - A2) axis-balanced motors
 - A3) each motor is mounted on the robot

in a position preceding the driven link

A4) no inertial couplings between motors and links

A4) \Rightarrow 2N × 2N inertia matrix Is block diagonal A2) \Rightarrow inertia matrix and gravity vector are independent from θ

´C(q,q)q̀\

link equation motor equation

R

M(q)

 $+ \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q-\theta) \\ K(\theta-q) \end{pmatrix}$

Single elastic joint

Transfer functions of interest

system with zeros and relative degree = 2

passive (zeros always precede poles on the imaginary axis)

- stabilization can be achieved via output $\boldsymbol{\theta}$ feedback

$$P_{\text{link}}(s) = \frac{q(s)}{\tau(s)} = \frac{K}{MBs^2 + (M+B)K} \frac{1}{s^2}$$

NO zeros!!

maximum relative degree = 4

Feedback linearization

For accurate trajectory tracking tasks

the link position q is a linearizing (flat) output

$$\begin{bmatrix} M(q) & 0 \\ 0 & B \end{bmatrix} \begin{pmatrix} \ddot{q} \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q})\dot{q} \\ 0 \end{pmatrix} + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q-\theta) \\ K(\theta-q) \end{pmatrix} = \begin{pmatrix} 0 \\ \tau \end{pmatrix} \iff \begin{bmatrix} q^{(4)} = u \end{bmatrix}$$

differentiating twice the link equation and using the motor acceleration yields

$$\tau = BK^{-1}M(q)u + K(\theta - q) + B\ddot{q} + BK^{-1}\left(2\dot{M}q^{(3)} + \ddot{M}\ddot{q} + \frac{d^2}{dt^2}(C\dot{q} + g(q))\right)$$

- an exactly linear and I/O decoupled closed-loop system is obtained
 - to be stabilized with standard techniques for linear dynamics (pole placement, LQ, ...)
- requires higher derivatives of q
 q, q, q, q⁽³⁾
- however, these can be computed from the model using the state measurements
- requires higher derivatives of the dynamics components
- A $O(N^3)$ Newton-Euler recursive numerical algorithm is available for this problem

*M,Ĉ,*ġ

Feedback linearization

Based on the rigid model only vs. when including joint elasticity

$$\tau = M(q)(\ddot{q}_d + K_D(\dot{q}_d - \dot{q}) + K_P(q_d - q)) + C(q, \dot{q})\dot{q} + g(q)$$

$$\tau = BK^{-1}M(q)u + K(\theta - q) + B\ddot{q} + BK^{-1}\left(2\dot{M}q^{(3)} + \ddot{M}\ddot{q} + \frac{d^2}{dt^2}(C\dot{q} + g(q))\right)$$

$$u = \left(q_d^{[4]} + K_J(\ddot{q}_d - \ddot{q}) + K_A(\ddot{q}_d - \ddot{q}) + K_D(\dot{q}_d - \dot{q}) + K_P(q_d - q)\right)$$

rigid computed torque [Spong, 1986] elastic joint feedback linearization

Scientific Colloquium for the Opening of the MSRM at TUM

Feedback linearization

Benefits on an industrial KUKA KR-15/2 robot (235 kg) with joint elasticity

trajectory tracking with model-based control

Regulation tasks

Using a minimal PD+ action on the motor side

for a desired constant link position q_d

- evaluate the associated desired motor position θ_d at steady state
- collocated (partial state) feedback preserves passivity, with stiff K_P gain dominating gravity
- focus on the term for gravity compensation (acting on link side) from motor measurements

$$\theta_d = q_d + K^{-1}g(q_d) \qquad \tau = \tau_g + K_P(\theta_d - \theta) - K_D\dot{\theta} \qquad K_D > 0$$

$ au_g$	gain criteria for stability	
$g(q_d)$	$\lambda_{min} \begin{bmatrix} K & -K \\ -K & K + K_P \end{bmatrix} > \alpha$	[Tomei, 1991]
$g(\theta - K^{-1}g(q_d))$	$\lambda_{min} \begin{bmatrix} K & -K \\ -K & K + K_P \end{bmatrix} > \alpha$	[De Luca, Siciliano, Zollo, 2004]
$g(\overline{q}(\theta)), \ \overline{q}(\theta): \ g(\overline{q}) = K(\theta - \overline{q})$	$K_P > 0, \lambda_{min}(K) > \alpha$	[Ott, Albu-Schäffer, 2004]
$g(q) + BK^{-1}\ddot{g}(q)$	$K_P > 0, \qquad K > 0$	[De Luca, Flacco, 2010]
exact gravity cancellation (with full state feedback) $\alpha = \max(\left\ \frac{\partial g(q)}{\partial q}\right\)$		

Exact gravity cancellation

A DO MAN VER

A slightly different view

• for rigid robots this is trivial, due to collocation

Exact gravity cancellation

... based on the concept of feedback equivalence between nonlinear systems

• for elastic joint robots, **non-collocation** of input torque and gravity term

Feedback equivalence

Exploit the system property of being feedback linearizable (without forcing it!)

A global PD-type regulator

STADIUM VIE

Vibration damping on lightweight robots

DLR-III or KUKA LWR-IV with relatively low joint elasticity (use of Harmonic Drives)

Vibration damping **OFF**

Cartesian vibration damping ON

[Albu Schäffer et al, 2007]

For relatively large joint elasticity (low stiffness), as encountered in VSA systems, vibration damping via joint torque feedback + motor damping is **insufficient** for high performance!

Damping injection on the link side

Method for the VSA-driven bimanual humanoid torso David

- same principle of feedback equivalence (including state transformation)
- ESP = Elastic Structure Preserving control by DLR [Keppler et al, 2016]
- generalizations to trajectory tracking, to nonlinear joint flexibility, and to visco-elastic joints

Damping injection on the link side

Method for VSA-driven bimanual humanoid torso David at DLR

[Keppler et al, 2017]

Environment interaction via impedance control

Matching a generalized (fourth order) impedance model: A simple 1-DOF case

again, by the principle of feedback equivalence (including the state transformation)

- Mature field revamped by a new "explosion" of interest
 - simpler control laws for compliant and soft robots are very welcome
 - sensing requirements could be a bottleneck
 - combine (learned) feedforward and feedback to achieve robustness
 - iterative learning on repetitive tasks is available for flexible manipulators
 - optimal control (min time, min energy, max force, ...) still open for fun
- Revisiting model-based control design
 - do not fight too much against the natural dynamics of the system
 - it is unwise to stiffen what was designed/intended to be soft on purpose
 - still, don't give up too much of desirable performance!
- Ideas assessed for joint elasticity may migrate to many application domains and other classes of soft-bodied robots
 - locomotion, shared manipulation, physical interaction in complex tasks, ...
 - keep in mind intrinsic constraints and control limitations (e.g., instabilities in the system inversion of tip trajectories for flexible link robots)