TALK @ III I ISTITUTO ITALIANO DI TECNOLOGIA

Istituto Italiano di Tecnologia - IIT Genova, January 23, 2019

Control schemes for safe human-robot interaction

Alessandro De Luca

Dipartimento di Ingegneria Informatica, Automatica e Gestionale (DIAG) www.diag.uniroma1.it/deluca

Human-friendly robotics

The domain of physical and cognitive HRI

co-workers on factory floor

personal robots in service

Collision and contact handling

Basic safety-related control problems in pHRI

collision detection/isolation and reaction (without the use of external sensing)

continuous

collision avoidance (while the task is running)

estimation and control of intentional forces exchanged at the contact (without force or touch sensors)

Physical HRI

Hierarchy of consistent behaviors

Safety is the most important feature of a robot that has to work close to human beings

Classical solutions preserving safety in industrial environments – cages, stop/slow down robot motion in presence of humans **[ISO 10218, TS 15066]** – are not appropriate for collaborative pHRI

Physical HRI

Hierarchy of consistent behaviors

Coexistence is the robot capability of sharing the workspace with other entities, most relevant humans

Human (and robot!) safety requirements must be consistently guaranteed (i.e., **safe coexistence**)

original robot task

safe HR coexistence

A control architecture for physical HRI

Hierarchy of consistent behaviors (BioRob 2012)

Collaboration occurs when the robot performs complex tasks with direct human interaction and coordination

Two modalities which are not mutually exclusive: contactless and **physical**

A control architecture for physical HRI

Relation with ISO Standard 10218 and Technical Specification 15066

- collision detection and reaction
- workspace sharing
 - with collision avoidance
- coordinated motions & actions
 - with/without contact

Collision event pipeline

Haddadin, De Luca, Albu-Schäffer (T-RO 2015)

Monitoring signals can be generated from sensors or models (signal- or model-based methods)

Context information is needed (or useful) to take the right or most suitable decisions

Monitoring robot collisions

Applies equally to rigid and elastic joints, with and without joint torque sensing

Energy-based residual

Block diagram for the generator of a scalar residual signal

Collision detection

Experiment on a 6R robot with energy-based scalar residual

robot at rest or moving under Cartesian impedance control on a straight horizontal line (with a F/T sensor at wrist for analysis)

6 phases

- A: contact force applied is acting against motion direction \Rightarrow detection
- B: no force applied, with robot at rest
- C: force increases gradually, but robot is at rest \Rightarrow no detection
- D: robot starts moving again, with force being applied \Rightarrow detection
- E: robot stands still and a strong force is applied in z-direction \Rightarrow no detection
- F: robot moves, with a z-force applied ≈ orthogonal to motion direction ⇒ poor detection

Genova, January 23, 2019

Momentum-based residual

Block diagram for the generator of a vector residual signal

Collision detection and isolation

Based on residuals for robots with rigid or elastic joints (ICRA 2005, IROS 2006)

dynamic model of robots with elastic joints and environment interaction

$$M(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q) = \tau_J + \tau_K$$

$$B\ddot{\theta} + \tau_J = \tau$$

$$B\ddot{\theta} + \tau_J = \tau$$

$$B\ddot{\theta} + \tau_J = K(\theta - q)$$

$$\tau_K = J_K^T(q)F_K$$

$$T_J = K(\theta - q)$$

$$T_J$$

Collision detection and isolation

Experiment on 3 links of a position-controlled LWR-III with momentum-based vector signal

Genova, January 23, 2019

Detection time delay

Experiment with a dummy head instrumented with an accelerometer

Collision reaction

Using the vector residual

Collision detection and reaction

Residual-based experiments on DLR LWR-III (IROS 2006)

- collision detection followed by different reaction strategies
- zero-gravity behavior: gravity is always compensated first (by control)
- detection time: 2 ms, reaction time: + 1 ms

Collision reaction

Portfolio of possible robot reactions

residual amplitude \propto severity level of collision

Collision reaction

Further examples (IROS 2008)

- without external sensing
- any place, any time ...

 the famous "volunteer" Sami Haddadin (now a "big" professor)

- manipulator is position-controlled on a geometric path
- timing slows down, stops, possibly reverses

Sensitivity to payload changes/uncertainty

Collision detection and isolation after few moves for identification (IROS 2017)

residuals with online estimated payload after 10 positioning

all three collisions are detected by our residual when exceeding the threshold of 6 Nm

https://youtu.be/fNP6smdp7aE

Collision avoidance

Using exteroceptive sensors to monitor robot workspace (ICRA 2010)

 external sensing: stereo-camera, TOF, structured light, RGB-Depth, laser, presence, ... placed optimally to minimize occlusions (robot is to be removed from images)

Depth image How to use it?

Depth space

2 ½ space for efficient robot-obstacle distance computations (ICRA 2012)

Distance and contact point localization

Using the depth sensor

Localization of contact point

- depth image of the environment captured by a Kinect sensor
- robot is removed from image with a URDF filter¹, starting from its 3D CAD model
- tracking of the human hands (later, of the whole body), using the filtered image
- each link surface of the robot is modelled with a set of polygonal primitive shapes
- distance between the hand and all the vertices of the polygons is computed
- when contact is detected, the vertex at minimum distance will be identified as the contact point
- algorithm is applied in parallel to both left and right hands

Safe physical human-robot collaboration

Excerpts from a long video at IROS 2013

coexistence through collision avoidance

https://youtu.be/pIIhY8E3HFg

collaboration through contact identification (here, end-effector only)

Distance and contact estimation

Using Kinect, CAD model, distance computation, and residual to localize contact

- when the residual indicates a contact/collision (and colliding link), the vertex in the robot CAD surface model with minimum distance is taken as the contact point
- algorithm is applied in parallel to both left and right hand (or other body parts)

Monitoring the workspace with two Kinects

...without giving away the depth space computational approach (RA-L 2016)

https://youtu.be/WIw_Uj_ooYI

real-time efficiency

extremely fast also with 2 devices: 300 Hz rate (RGB-D camera has 30 fps)

problems solved by the second camera

- + eliminates collision with false, far away "shadow" obstacles
- + reduces to a minimum gray areas, thus detects what is "behind" the robot
- + calibration is done off-line

CAD model of the robot and equipments/tools/cables

Filtering out the right parts from the depth images

Contact point localization

CUDA framework (IROS 2017)

Real-time contact point localization

- the algorithm is based on distance computation in depth space, taking advantage from a CUDA framework for massively parallel GPU programming
- processing of three 2.5D images:
 - real depth image I_r , captured by a RGB-D sensor (a Kinect)
 - virtual depth image I_v , containing only a projection of the robot CAD model
 - filtered depth image $I_f = f(I_r, I_v)$, containing only the obstacles

 distance computation (in depth space) between all robot points in the virtual depth image and all obstacle points in the filtered depth image

Contact point localization

Distance in depth space

• compute distances between all robot points $P_D = \begin{pmatrix} p_{v,x} & p_{v,y} & d_v \end{pmatrix}^T$ in virtual depth image and all obstacles points $O_D = \begin{pmatrix} p_{f,x} & p_{f,y} & d_f \end{pmatrix}^T$ in filtered depth image

 $v_z = d_f - d_v$

$$d(\boldsymbol{O},\boldsymbol{P})=\sqrt{v_x^2+v_y^2+v_z^2}, \ \ {\rm with}$$

$$v_x = \frac{(p_{f,x} - c_x)d_f - (p_{v,x} - c_x)d_v}{f s_x}$$
$$v_y = \frac{(p_{f,y} - c_y)d_f - (p_{v,y} - c_y)d_v}{f s_y}$$

- when a contact is detected by the residual, the point of the visible robot surface at minimum distance from the obstacle is considered as contact point
- thanks to the parallel computing of the CUDA framework, the time needed to localize one or multiple contact points is the same

contact point localization processing

Safe coexistence in an industrial robotic cell

ABB IRB 4600 operation in an Abrasive Finishing cell with human access

depth images and GUI

- robot is moving at max 100 mm/s
- no safety zones were defined in ABB SafeMove
- Kinect OK (except when the view of one of the cameras is obstructed on purpose)

Implemented control and communication architecture

Two Kinects for accurate HR distance monitoring, two laser scanners for backup safety

Force estimation for collaboration

Combining internal and external sensing

Task

- localize (in the least invasive way) points on robot surface where contacts occur
- estimate exchanged Cartesian forces
- control the robot to react to these forces according to a desired behavior

Solution idea

- use residual method to detect physical contact, isolate the colliding link, and identify the joint torques associated to the external contact force
- use a depth sensor to classify the human parts in contact with the robot and localize the contact points on the robot structure (and the contact Jacobian)
- solve a linear set of equations with the residuals, i.e., filtered estimates of joint torques resulting from contact forces/moments applied (anywhere) to the robot

$$m{r} \simeq m{ au}_{ext} = m{J}_c^T(m{q}) m{\Gamma}_c = ig(m{J}_{L,c}^T(m{q}) \ m{J}_{A,c}^T(m{q})ig) igg(m{F}_c \ m{M}_cigg)$$

Force estimation

Some simplifying assumptions

Dealing with contact forces

- most intentional contacts with a single hand (or fingers) are not able to transfer non-negligible torques
- to estimate reliably Γ_c we should have rank $J_c = 6$ which is true only if the robot has $n \ge 6$ joints and contact occurs at a link with index greater or equal to 6

assume
$$M_c = 0$$

only a **pure** Cartesian force is considered

dimension of the task related to the contact force is m=3 and its estimation is

$$oldsymbol{r}\simeqoldsymbol{ au}_{ext}=oldsymbol{J}_{Lc}^T(oldsymbol{q})oldsymbol{F}_c \quad \Longrightarrow \quad \widehat{oldsymbol{F}}_c=\left(oldsymbol{J}_{Lc}^T(oldsymbol{q})
ight)^\#oldsymbol{r}$$

 the contact Jacobian can be evaluated once the contact point is detected by the external depth sensor closely monitoring the robot workspace

Force estimation

Some limitations of the residual method

multiple simultaneous contacts can be considered (e.g., with both human hands)

$$\left(egin{array}{c} \widehat{m{F}}_1 \ \widehat{m{F}}_2 \end{array}
ight) = \left(m{J}_{m{L}1}^T(m{q}) \ m{J}_{m{L}2}^T(m{q}) \end{array}
ight)^\# m{r}$$

but with much less confidence in the resulting force estimates (detection is instead ok)

- estimates will be limited only to those components of *F_c* that can be detected by the residual
- all forces $F_c \in \mathcal{N}(J_c^T(q))$ will never be recovered \leftrightarrow they are absorbed by the robot structure

Validation of the virtual force sensor

Experiments with the KUKA LWR 4

Evaluation of estimated contact force

$$\widehat{\boldsymbol{F}}_{c} = \left(\boldsymbol{J}_{c}^{T}(\boldsymbol{q})
ight)^{\#} \boldsymbol{r}$$

- estimation accuracy was tested using known masses in known positions
- a single mass hung either on link 4 or on link 7, to emulate a single (point-wise) contact

			usin	ig $oldsymbol{J}_{oldsymbol{L}c}$	using $oldsymbol{J}_c$		
Link #	Mass	F_z	\widehat{F}_{z}	Deviation	\widehat{F}_{z}	Deviation	
4	1.93	-18.93	-18.75	0.95%	-4.46	76.43%	
7	1.93	-18.93	-18.91	0.1%	-18.82	0.58%	

 a mass hung on link 7, and then a second on link 4 so as to emulate a **double** contact

Link #	Mass	F_z	\widehat{F}_{z}	Deviation
4	2.03	-19.91	-19.43	2.41%
7	1.93	-18.93	-19.04	0.58%

case of two masses

Contact force estimation

Used within an admittance control scheme (IROS 2014)

https://youtu.be/Yc5FoRGJsrc

Estimation of Contact Forces using a Virtual Force Sensor

Emanuele Magrini, Fabrizio Flacco, Alessandro De Luca

Dipartimento di Ingegneria Informatica, Automatica e Gestionale, Sapienza Università di Roma

February 2014

Estimation of the contact force

Sometimes, even without external sensing

 if contact is sufficiently "down" the kinematic chain (≥ 6 residuals are available), the estimation of pure contact forces does not need any external information ...

Collision or collaboration?

Distinguishing hard/accidental collisions and soft/intentional contacts

 using suitable low and high bandwidths for the residuals (first-order stable filters)

 $\dot{r} = -K_I r + K_I au_K$

 a threshold is added to prevent false collision detection during robot motion

How to use the estimate on an external contact force for control (e.g., on a Kuka LWR)

- shaping the robot dynamic behavior in specific collaborative tasks
 - joint carrying of a load, holding a part in place, whole arm force manipulation, ...
 - robot motion controlled by
 - an admittance control law (in velocity FRI mode)
 - an impedance or force control laws (needs torque FRI mode)
 all implemented at contact level
- e.g., admittance control law using the estimated contact force
 - the scheme is realized at the single (or first) contact point
 - desired velocity of contact point taken proportional to (estimated) contact force

$$\dot{\boldsymbol{p}}_{c} = \boldsymbol{K}_{a}\boldsymbol{F}_{a}, \qquad \boldsymbol{K}_{a} = k_{a}\boldsymbol{I} > 0$$
$$\boldsymbol{F}_{a} = \widehat{\boldsymbol{F}}_{c} + \boldsymbol{K}_{p}(\boldsymbol{p}_{d} - \boldsymbol{p}_{c}), \qquad \boldsymbol{K}_{p} = k_{p}\boldsymbol{I} > 0$$

initial contact point position when interaction begins

Virtual force sensing for contact force regulation

Human-robot collaboration in torque control mode (ICRA 2015)

contact force estimation & control (anywhere/anytime)

https://youtu.be/glNHq7MpCG8 (italian); https://youtu.be/OM_1F33fcWk (english)

Impedance-based control of interaction

Reaction to contact forces by generalized impedance —at different levels

Control of generalized impedance

HR collaboration at the contact level (ICRA 2015)

https://youtu.be/NHn2cwSyCCo for these and the next two videos

natural (unchanged) robot inertia at the contact $\boldsymbol{M}_{d} = \left(\boldsymbol{J}_{c}\boldsymbol{M}^{-1}\boldsymbol{J}_{c}^{T}\right)^{-1}$

contact force **estimates** are used here **only** to detect and localize contact in order to start a collaboration phase **assigned** robot inertia at the contact with different desired masses along X, Y, Z

contact force **estimates** used **explicitly** in control law to modify robot inertia at the contact $(M_{dX} = 20, M_{dY} = 3, M_{dZ} = 10 [kg])$

Control of generalized contact force

Direct force scheme

explicit regulation of the contact force to a desired value, by imposing

$$oldsymbol{M}_d \ddot{oldsymbol{x}}_c + oldsymbol{K}_d \dot{oldsymbol{x}}_c = oldsymbol{K}_f (oldsymbol{F}_d - \widehat{oldsymbol{F}}_c) = oldsymbol{K}_f oldsymbol{e}_f$$

- a force control law needs always a measure (here, an estimate) of contact force
- task-compatibility: human-robot contact direction vs. desired contact force vector

 $F_{d,x} = 0, \quad F_{d,y} = 15N, \quad F_{d,z} = 0$

drift effects in poor control of contact force

Control of generalized contact force

Task-compatible force control scheme (ICRA 2015)

 only the norm of the desired contact force is controlled along the instantaneous direction of the estimated contact force

$$F_{d,x} = 15 \frac{\hat{F}_{c,x}}{\|\hat{F}_{c}\|}, \quad F_{d,y} = 15 \frac{\hat{F}_{c,y}}{\|\hat{F}_{c}\|}, \quad F_{d,z} = 15 \frac{\hat{F}_{c,z}}{\|\hat{F}_{c}\|} \quad \Leftrightarrow \quad \|F_{d}\| = 15 \text{ [N]}$$

force control law is able to regulate exactly contact forces under static conditions

task-compatible control of contact force

Genova, January 23, 2019

Hybrid force/velocity control scheme (ICRA 2016)

- it allows to control both contact force and motion in two mutually independent sub-spaces
- extends at the contact level a hybrid force/velocity control law, with the orientation of contact task frame being determined instantaneously
- task frame obtained by a rotation matrix *R_t* such that *z_t* is aligned with the contact force *F_c*

the auxiliary command is given by

$$a = J_c^{\#} M_d^{-1} (R_t a_c + M_d (\dot{R}_t{}^t \dot{x}_c - \dot{J}_c \dot{q})) + P_c \ddot{q}_0$$

 a complete decoupling between force control and velocity control can be achieved choosing the new auxiliary control input as

$$oldsymbol{a}_c = oldsymbol{S}_f^c \, \ddot{y}_f + oldsymbol{S}_
u^c \, \dot{oldsymbol{
u}}$$

Hybrid force/velocity control scheme

- consider a force regulation task along the instantaneous direction of the applied external force and a motion control task in the orthogonal plane
- selection matrices can be chosen as

$$oldsymbol{S}_{f}^{c} = \left[egin{array}{c} 0 \\ 0 \\ 1 \end{array}
ight] \qquad oldsymbol{S}_{
u}^{c} = \left[egin{array}{c} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array}
ight]$$

regulation of the contact force to desired constant value $F_d > 0$ is obtained choosing

$$\ddot{y}_f = k_f \left(F_d - \|\widehat{\boldsymbol{F}}_c\| \right) - k_{df} \dot{y}_f$$

the desired velocity can be achieved using the control law

$$\dot{\boldsymbol{\nu}} = \dot{\boldsymbol{\nu}}_d + \boldsymbol{K}_d \left(\boldsymbol{\nu}_d - \boldsymbol{\nu} \right) + \boldsymbol{K}_i \int_0^t \left(\boldsymbol{\nu}_d - \boldsymbol{\nu} \right) \boldsymbol{ds},$$

final control input becomes

$$\begin{split} \boldsymbol{a} &= \boldsymbol{J}_{c}^{\#} \boldsymbol{M}_{d}^{-1} \bigg[\boldsymbol{R}_{t} \boldsymbol{S}_{f}^{c} \left(k_{f} \boldsymbol{e}_{f} - k_{df} \dot{\boldsymbol{y}}_{f} \right) + \boldsymbol{R}_{t} \boldsymbol{S}_{\nu}^{c} \left(\dot{\boldsymbol{\nu}}_{d} + \boldsymbol{K}_{d} \dot{\boldsymbol{e}}_{\boldsymbol{\nu}} + \boldsymbol{K}_{i} \boldsymbol{e}_{\boldsymbol{\nu}} \right) \\ &+ \boldsymbol{M}_{d} \dot{\boldsymbol{R}}_{t}^{c} \dot{\boldsymbol{x}} - \boldsymbol{M}_{d} \dot{\boldsymbol{J}}_{c} \dot{\boldsymbol{q}} \bigg] + \boldsymbol{P}_{c} \ddot{\boldsymbol{q}}_{0}, \end{split}$$

Hybrid force/velocity control at contact level (IROS 2016)

- desired contact force along Y direction regulated to $F_d = 15[N]$
- constant desired velocity to perform a line in the vertical XZ plane

$$\boldsymbol{\nu}_d = \left[egin{array}{c} 0.015 \\ 0.03 \end{array}
ight] \qquad \dot{\boldsymbol{\nu}}_d = \left[egin{array}{c} 0 \\ 0 \end{array}
ight]$$

https://youtu.be/tlhEK5f00QU for this and next video

constant desired force in Y direction (15 N)
 constant desired velocity in vertical XZ plane (3.35 cm/s)

Genova, January 23, 2019

Hybrid force/velocity control at contact level (IROS 2016)

- desired contact force along the X direction regulated to $F_d = 15[N]$
- desired velocity/acceleration to perform a circle in the vertical YZ plane

$$\boldsymbol{\nu}_{d} = \begin{bmatrix} \omega\rho\sin\omega t\\ \omega\rho\cos\omega t \end{bmatrix} \qquad \dot{\boldsymbol{\nu}}_{d} = \begin{bmatrix} \omega^{2}\rho\cos\omega t\\ -\omega^{2}\rho\sin\omega t \end{bmatrix}$$

- constant desired force in X direction (15 N)
 - circular desired trajectory in vertical YZ plane (7.5 cm/s, radius 12 cm)

Genova, January 23, 2019

Scenario for HRC in manual polishing

EU SYMPLEXITY project: preparing a metallic part for a laser polishing machine

Scenario for HRC in manual polishing

Distinguishing different contact forces

Force/Torque (F/T) sensor at wrist

- manual polishing force is measured
- end-effector Jacobian is known

contact force at unknown location

- not measurable by the F/T sensor
- possibly applied by the human while manipulating the work piece held by robot
- contact Jacobian is **not** known

Handling multiple contacts

Dynamic model and residual computation

robot dynamic model takes the form

$$M(\boldsymbol{q}) \ddot{\boldsymbol{q}} + C(\boldsymbol{q}, \dot{\boldsymbol{q}}) \dot{\boldsymbol{q}} + \boldsymbol{g}(\boldsymbol{q}) = \boldsymbol{\tau} + \boldsymbol{J}_{e}^{T}(\boldsymbol{q}) \boldsymbol{F}_{e} + \boldsymbol{J}_{c}^{T}(\boldsymbol{q}) \boldsymbol{F}_{c}$$

joint torques resulting from different contacts

(measured) at the end-effector level

$${m au}_e = {m J}_e^T(q) {m F}_e$$

$$\boldsymbol{\tau}_{c} = \boldsymbol{J}_{c}^{T}(\boldsymbol{q})\boldsymbol{F}_{c}$$

- monitor the robot generalized momentum $p = M(q) \dot{q}$
- (model-based) residual vector signal to detect and isolate the generic contacts

$$r(t) = K_i \left(p - \int_0^t \left(C^T(q, \dot{q}) \dot{q} - g(q) + \tau + J_e^T(q) F_e - r \right) ds \right)$$

$$K_i
ightarrow \infty ext{ (sufficiently large)} \quad \Rightarrow \quad r \simeq {m au}_c$$

Control strategy during manual polishing

Human and robot are physically collaborating

 when there is no extra contact along the structure, position and orientation of the end-effector are both held fixed by a stiff kinematic control law

$$\dot{q} = J_e^{\#} K_e \begin{pmatrix} v_r \\ \omega_r \end{pmatrix} = J_e^{\#} K_e \begin{pmatrix} I & 0 \\ 0 & T(\phi) \end{pmatrix} \begin{pmatrix} p_d - p \\ \phi_d - \phi \end{pmatrix}$$
as large as possible
$$\uparrow \text{ constant values}$$

- the controller counterbalances all forces/torques applied by the operator during manual polishing
- when the human intentionally pushes on the robot body, control of the endeffector orientation is relaxed

$$3 \times 6 \text{ for UR10}$$

$$J_e(q) = \begin{pmatrix} J_p(q) \\ J_o(q) \end{pmatrix}$$

$$\dot{q} = J_p^{\#} K_p (p_d - p) + \left(I - J_p^{\#} J_p\right) K_r r$$

human can reconfigure the arm, thus reorient the work piece held by the robot

HRC phase with UR10

Experimental results (Mechatronics 2018)

https://youtu.be/slwUiRT_IJQ

no F/T sensor, switching to FreeDrive mode

Z

part to be polished

https://youtu.be/bjZbmlAclYk

A Model-Based Residual Approach for Human-Robot Collaboration during Manual Polishing Operations

Claudio Gaz, Emanuele Magrini, Alessandro De Luca

Dipartimento di Ingegneria Informatica, Automatica e Gestionale, Sapienza Università di Roma

May 2017

with F/T sensor, using residual method

(Special issue on HRC in industrial applications)

for a similar video on the KUKA LWR, see https://youtu.be/TZ6nPqLPDxl

HRC phase with UR10

Experimental results

Use of kinematic redundancy in pHRI

Robot reaction to collisions, in parallel with execution of original task

collision detection ⇒ robot reacts so as to preserve as much as possible (if at all possible) the execution of a planned task trajectory, e.g., for the end-effector

Selective reaction to estimated contact force

Robot control strategy (IROS 2017)

- the control scheme exploits robot redundancy in order to follow a Cartesian trajectory, despite the possible occurrence of accidental collisions on the robot body
- execution of the original end-effector motion task is preserved while reacting to a detected contact, with the **estimated contact force** above a threshold F_{relax} but **not too large**
- using null-space motion, the robot tries to eliminate, reduce or keep low the contact force
- if the contact force exceeds a threshold F_{abort} , the robot abandons the original task and reacts by imposing **admittance control at the contact**

Use of kinematic redundancy

Robot reaction to collisions, in parallel with execution of original task (IROS 2017)

https://youtu.be/q4PZKE-kgc0

Human-Robot Coexistence and **Contact Handling with Redundant Robots**

Emanuele Magrini Alessandro De Luca

Robotics Lab, DIAG Sapienza Università di Roma

February 2017

$idle \Leftrightarrow relax \Leftrightarrow abort$

pHRI experiments

Analysis of results

pHRI experiments

Analysis of results

the robot goes in abort state, an admittance error is present...

HRC under a closed control architecture

KUKA KR5 Sixx R650 robot

- low-level motor control laws are not known nor accessible by the user
- user programs, based also on other exteroceptive sensors (vision, Kinect, F/T sensor) can be implemented on an external PC via the RSI (RobotSensorInterface), communicating with the KUKA controller every 12 ms
- available robots measures: joint positions (by encoders) and (absolute value of) applied motor currents
- controller reference is given as a velocity or a position in joint space (also Cartesian commands are accepted)

Collision detection and stop

KUKA KR5 Sixx R650 robot (ICRA 2013)

https://youtu.be/18RsAxkf7kk (this and next 3 videos)

high-pass filtering of motor currents (a signal-based detection...)

Distinguish accidental collisions from intentional contact

... and then collaborate

using both high-pass and low-pass filtering of motor currents — here collaboration mode is manual guidance of the robot

Other possible robot reactions

After collaboration mode has been established

collaboration mode: pushing/pulling the robot

collaboration mode: compliant-like robot behavior

Trials on collision detection and hard/soft contact

With a group of human subjects

26 volunteers (informed students, in the age range 20-24, about 20% female)

	collision detection	trial	trial	trial	trial	trial	total	%	%	%
		1	2	3	4	5	count	over all	over all	over last
a total of								trials	attempts	trials
168 collisions	at attempt # 1	19	19	18	23	25	104	80%	61.9%	92.6%
	at attempt # 2	6	2	4	3	1	16	12.3%	9.5%	3.7%
in series of 5	at attempt # 3	1	4	3	0	0	8	6.2%	4.8%	0%
for each user	at attempt # 4	0	1	1	0	0	2	1.5%	1.2%	0%
(with repeated	# of user trials	26	26	26	26	26	130	100%	-	-
attomatel	robot fails to stop	8	13	13	3	1	38	-	22.6%	3.7%
allempts	# of user attempts	34	39	39	29	27	168	-	100%	100%
	false stops						6	4.6%	3.6%	
416 contacts,	distinguishing between soft contacts (S) and accidental collisions (H)			numb soft t	er of rials	numb succe	er of esses	number of fails	% of successes	% of fails
half of which	group 1: sequence SSHHSSHH			52	2	39	9	13	75.0%	25.0%
were intended	group 1: sequence HHSSHHSS			52 44		4	8	84.6%	15.4%	
were interfued	group 2: sequence SSSSHHHH			52	2	44	4	8	84.6%	15.4%
το de son	group 2: sequence HHHHSSSS			52	2	4	5	7	86.5%	13.5%
	overall			20	8	17	2	36	82.7%	17.3%

end-users experience a "learning" process

adapt thresholds!

Conclusions

Toward a safer and efficient control of human-robot physical collaboration

- framework for safe human-robot coexistence and collaboration, based on hierarchy of consistent controlled behaviors of the robot
 - residual-based collision detection (and isolation)
 - portfolio of collision reaction algorithms (using also redundancy)
 - real-time collision avoidance based on data processed in depth space
 - distinguishing intentional/soft contacts from accidental/hard collisions
 - estimation of contact force and location, by combining inner/outer sensing
 - admittance/impedance/force/hybrid control laws, generalized at the contact level
 - some useful behavior can be obtained also in poor man situations (closed control architectures, with no access to signals or dynamic information)
 - applications are slowly coming from industrial and service stakeholders

Our team at DIAG

Robotics Lab of the Sapienza University of Rome (back in 2014)

Acknowledgements

@Sapienza – DIAG - Fabrizio Flacco[†], Claudio Gaz, Milad Geravand, Emanuele Magrini
 @DLR – Institute of Robotics and Mechatronics - Alin Albu-Schäffer, Sami Haddadin
 @Stanford – Artificial Intelligence Lab - Oussama Khatib, Torsten Kröger

References - 1

Download pdf for personal use at <u>www.diag.uniroma1.it/deluca/Publications</u>

- A. De Luca and R. Mattone, "Sensorless robot collision detection and hybrid force/motion control," IEEE Int. Conf. on Robotics and Automation, pp. 999-1004, 2005.
- A. De Luca, A. Albu-Schäffer, S. Haddadin, and G. Hirzinger, "Collision detection and safe reaction with the DLR-III lightweight manipulator arm," IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1623-1630, 2006.
- S. Haddadin, A. Albu-Schäffer, A. De Luca, and G. Hirzinger, "Collision detection and reaction: A contribution to safe physical human-robot interaction," IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3356-3363, 2008 (IROS 2008 Best Application Paper Award).
- A. De Luca and L. Ferrajoli, "Exploiting robot redundancy in collision detection and reaction," IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3299-3305, 2008.
- A. De Santis, B. Siciliano, A. De Luca, A. Bicchi, "An atlas of physical human-robot interaction," Mechanism and Machine Theory, vol. 43, no. 3, pp. 253–270, 2008 (2017 MMT Award for Excellence).
- A. De Luca and L. Ferrajoli, "A modified Newton-Euler method for dynamic computations in robot fault detection and control," IEEE Int. Conf. on Robotics and Automation, pp. 3359-3364, 2009.
- F. Flacco, A. De Luca, "Multiple depth/presence sensors: Integration and optimal placement for human/robot coexistence," IEEE Int. Conf. on Robotics and Automation, pp. 3916-3923, 2010.
- F. Flacco, T. Kröger, A. De Luca, and O. Khatib, "A depth space approach to human-robot collision avoidance," IEEE Int. Conf. on Robotics and Automation, pp. 338-345, 2012.
- A. De Luca and F. Flacco, "Integrated control for pHRI: Collision avoidance, detection, reaction and collaboration," 4th IEEE RAS/EMBS Int. Conf. on Biomedical Robotics and Biomechatronics, pp. 288-295, 2012 (BioRob 2012 RAS Best Paper Award).
- M. Geravand, F. Flacco, and A. De Luca, "Human-robot physical interaction and collaboration using an industrial robot with a closed control architecture," IEEE Int. Conf. on Robotics and Automation, pp. 3985-3992, 2013.
- E. Magrini, F. Flacco, and A. De Luca, "Estimation of contact force using a virtual force sensor," IEEE/RSJ Int. Conf. on Intelligent Robots and System, pp. 2126-2133, 2014.

References - 2

Download pdf for personal use at <u>www.diag.uniroma1.it/deluca/Publications</u>

- F. Flacco, T. Kröger, A. De Luca, and O. Khatib, "A depth space approach for evaluating distance to objects with application to human-robot collision avoidance," J. of Intelligent & Robotic Systems, vol. 80, suppl. 1, pp. 7-22, 2015.
- E. Magrini, F. Flacco, and A. De Luca, "Control of generalized contact motion and force in physical human-robot interaction," IEEE Int. Conf. on Robotics and Automation, pp. 2298-2304, 2015 (ICRA 2015 Best Conference Paper Award Finalist).
- E. Magrini and A. De Luca, "Hybrid force/velocity control for physical human-robot collaboration tasks," IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. pp. 857-863, 2016.
- F. Flacco and A. De Luca, "Real-time computation of distance to dynamic obstacles with multiple depth sensors," IEEE Robotics and Automation Lett., vol. 2, no. 1, pp. 56-63, 2017.
- E. Magrini, A. De Luca, "Human-robot coexistence and contact handling with redundant robots," IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 4611-4617, 2017.
- S. Haddadin, A. De Luca, and A. Albu-Schäffer, "Robot collisions: A survey on detection, isolation, and identification," IEEE Trans. on Robotics, vol. 33, no. 6, pp. 1292-1312, 2017.
- C. Gaz, A. De Luca, "Payload estimation based on identified coefficients of robot dynamics --with an application to collision detection," IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3033-3040, 2017.
- C. Gaz, E. Magrini, A. De Luca " A model-based residual approach for human-robot collaboration during manual polishing operations," Mechatronics, vol. 55, pp. 234-247, 2018.
- E. Mariotti, E. Magrini, A. De Luca, "Admittance control for human-robot interaction using an industrial robot equipped with a F/T sensor," IEEE Int. Conf. on Robotics and Automation (submitted), 2019.
- Videos: YouTube channel <u>RoboticsLabSapienza</u>. Playlist: <u>Physical human-robot interaction</u>